Problem: f(f(a())) -> f(g(n__f(n__a()))) f(X) -> n__f(X) a() -> n__a() activate(n__f(X)) -> f(activate(X)) activate(n__a()) -> a() activate(X) -> X Proof: Bounds Processor: bound: 3 enrichment: match automaton: final states: {6,5,4} transitions: a1() -> 35* f1(25) -> 26* activate1(27) -> 28* activate1(24) -> 25* activate1(33) -> 34* n__a1() -> 19* n__f1(17) -> 18* n__f1(9) -> 10* n__f1(11) -> 12* n__a2() -> 41* n__f2(37) -> 38* f0(2) -> 4* f0(1) -> 4* f0(3) -> 4* f2(47) -> 48* a0() -> 5* g2(46) -> 47* g0(2) -> 1* g0(1) -> 1* g0(3) -> 1* n__f3(51) -> 52* n__f0(2) -> 2* n__f0(1) -> 2* n__f0(3) -> 2* n__a0() -> 3* activate0(2) -> 6* activate0(1) -> 6* activate0(3) -> 6* 1 -> 6,27,11 2 -> 6,24,17 3 -> 6,33,9 10 -> 4* 12 -> 4* 18 -> 4* 19 -> 5* 24 -> 25* 25 -> 37* 26 -> 25,6 27 -> 28,25 28 -> 25* 33 -> 34* 34 -> 25* 35 -> 34,25,6 38 -> 46,26,6 41 -> 35,6 47 -> 51* 48 -> 26,25,6,37 52 -> 48,26 problem: Qed