Problem:
f(f(a())) -> f(g(n__f(n__a())))
f(X) -> n__f(X)
a() -> n__a()
activate(n__f(X)) -> f(activate(X))
activate(n__a()) -> a()
activate(X) -> X
Proof:
Bounds Processor:
bound: 3
enrichment: match
automaton:
final states: {6,5,4}
transitions:
a1() -> 35*
f1(25) -> 26*
activate1(27) -> 28*
activate1(24) -> 25*
activate1(33) -> 34*
n__a1() -> 19*
n__f1(17) -> 18*
n__f1(9) -> 10*
n__f1(11) -> 12*
n__a2() -> 41*
n__f2(37) -> 38*
f0(2) -> 4*
f0(1) -> 4*
f0(3) -> 4*
f2(47) -> 48*
a0() -> 5*
g2(46) -> 47*
g0(2) -> 1*
g0(1) -> 1*
g0(3) -> 1*
n__f3(51) -> 52*
n__f0(2) -> 2*
n__f0(1) -> 2*
n__f0(3) -> 2*
n__a0() -> 3*
activate0(2) -> 6*
activate0(1) -> 6*
activate0(3) -> 6*
1 -> 6,27,11
2 -> 6,24,17
3 -> 6,33,9
10 -> 4*
12 -> 4*
18 -> 4*
19 -> 5*
24 -> 25*
25 -> 37*
26 -> 25,6
27 -> 28,25
28 -> 25*
33 -> 34*
34 -> 25*
35 -> 34,25,6
38 -> 46,26,6
41 -> 35,6
47 -> 51*
48 -> 26,25,6,37
52 -> 48,26
problem:
Qed